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The AZ = 3, 4 contributions in K + 2z decays and (6,-6,) 
S-wave n-n phase shifts 

A Q Sarkert 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS. U K  

MS received 16 October 1972 

Abstract. The Af = i. 1 contributions to the K -+ 2n ( C P  conserving) decal amplitudes dut: 
to both the virtual electromagnetic and the intrinsic A I  = 2 weak interaction effects are 
calculated. The electromagnetic contributions are calculated within a model from the pion 
and kaon electromagnetic mass differences and their total sum can be made finite a t  the 
physical point of the amplitudes although they are individually divergent. The AI = 1 weak 
interaction effect is related to the coefficient of the divergent part of the pion electromagnetic 
mass difference. The predicted values of the total amplitudes and also that of the S-wave 
n-n phase shift (6,-6,) are found to be in good agreement with their experimental values. 

1. Introduction 
L -  

During the last three years the accuracies of the measurements of Kg -+ n"n" and 
K' -+ n+no decay rates have been considerably improved (Soding et ul 1972) and i t  is 
now possible to discuss the AI = i rule, and its deviations in K -+ 2n decays, quantita- 
tively. The fact that K' --t n+no decay exists, albeit small compared to K,O -+ 2n decays, 
indicates that the AI = f rule is violated in K -+ 2n decays. That the violation of the 
AI = rule in K + 2n decays may be due to the virtual electromagnetic interactions 
was pointed out by Gell-Mann and Rosenfeld (1957) as early as 1957, although these 
authors concluded that the electromagnetic effect in K -+ 271 decay is unlikely to be 
large enough to account for the K' -+ n+no decay. 

Cabibbo (1964) and Gell-Mann (1964) used the SU(3) symmetry to discuss the K -+ 2n 
decays. In the current-current form of the nonleptonic interaction Hamiltonian, the 
K -+ 271 decay amplitudes could have a AI = $violating part from the zrepresentation 
of SU(3). I t  has now been possible to calculate the AI = i violating effects in K -+ 2n 
decays due to both the intrinsic weak interaction parts as well as the virtual electro- 
magnetic interactions within a certain model. although the AI = $ part of K -+ 271 
decay itself is least understood. 

In SU(3) symmetry that the matrix elements of K -+ 2n decays vanish was shown by 
Cabibbo (1964) and Gell-Mann (1964). In the context of current algebra and soft-pion 
limits of K -+ 2n decays, the analyses were carried out by Suzuki (1966) and Hara and 
Nambu (1966) who showed that in the specified limit K -+ 2n decays obey the AI = rule. 
However, one observes that for zero-mass pions (SU(2) x SU(2) limit) one must have 
also the zero-mass kaon because of the four-momentum conservation. I t  is simple to 
see that one is then working with the larger SU(3) x SU(3) symmetry and the vanishing 
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K + 277 decays 673 

of all K -+ 277 matrix elements is then a consequence of the SU(3) result. If however one 
gives up the four-momentum conservation, then the soft-pion constraints do not 
determine the K --f 271 decay matrix elements uniquely. So from these considerations 
an understanding of the AI = $ part of the K + 271 decays is an open problem. We 
shall however be concerned here only with the AI = $ and 5 contributions in K + 271 

decays. 
The electromagnetic interaction Hamiltonian has AI = 1 and 2 parts. It will then 

induce A I  = 3 and % effects in the K + 271 decays, when combined with the first order 
weak interactions. To calculate these AI = 3 and 5 effects in K --t 277 decays we use a 
model as shown in the figure 1. The model was first used by Wallace (1969) to  calculate 

Figure 1. A model for the electromagnetic contributions to K + 2n decays. 

the A I  = $ effect in K + 271 decays in the soft-pion limits. We use it to  calculate the 
AI = $ and 5 contributions to K -+ 271 decays from the AI = 2 electromagnetic mass 
difference of pions in the soft-kaon limits and the AI = +contributions from the AI = 1 
electromagnetic mass difference of kaons in the soft-pion limits. We then extrapolate 
the results to the physical points. Although the electromagnetic mass differences of both 
kaons and pions contain divergent terms, they cancel each other after extrapolation in 
the contributions to  the K + 271 decay amplitudes. 

Using certain equal-time commutators of the generalized gauge field model (Lee 
et a1 1967) and the Bjorken limits (Bjorken 1966), Muller and Rothlietner (1968) first 
pointed out the connection between the A1 = + parts of the K + 271 decay amplitudes 
due to the weak interactions alone in the soft-kaon limit and the ‘divergent’ part of the 
electromagnetic mass difference of pions. To obtain the physical amplitudes one has to 
extrapolate the result from the soft-kaon point to the physical point (Chen and Mathur 
1971). 

For the extrapolation we use the technique suggested by Okubo and Mathur (1970). 
The central idea is that the medium-strong interaction Hamiltonian has a SU(3) x SU(3) 
symmetry breaking part belonging to  the (3,3) + (3,J) representation, characterized by 
one parameter ‘a’, (related to the ‘c’ parameter of Gell-Mann et a1 (1968) by a = c/,/2). 
We now assume that the matrix elements are smooth functions of the parameter ‘a’ 
between the values - 1 and 2, the former corresponding to the soft-pion limits 
(SU(2) x SU(2) symmetry) and the latter corresponding to the soft-kaon limit. The 
‘physical’ value corresponds to  the value of a (= -0.9) for which the broken 
SU(3) x SU(3) description, for instance, leads to the physical masses of the pion and 
kaon. The point a = Ocorresponds to  the exact SU(3) x SU(3) symmetry. One should 
note that the assumption that the matrix elements are smooth functions ofthe parameter 
‘U ’  between - 1 < a < 2 is much stronger than one implicit in the pion and kaon PCAC 
(partial conservation of the axial-vector current) hypothesis. 



674 A Q Surker 

It is perhaps worthwhile to mention here the various other methods to  calculate the 
AI = 5 , ;  effects in K -+ 271 decays and comment on them. Based on an intrinsic AI = 3 
part in weak interactions the K +  -+ n+n0 decay has been discussed by Schwinger (1964). 
Nieh (1968) used a phenomenological AI = 3 Lagrangian, while Sakurai (1967) used K* 
pole model to correlate the various observed AI = 3 effects in nonleptonic decays. 
Okubo et a1 (1967) used the algebra of currents to calculate the subtraction constant in 
a once-subtracted dispersion relation for the K -+ 271 decay amplitudes. These authors 
obtained the result that the amplitude for K +  -+ n+nu is proportional to the pion 
electromagnetic mass difference Am:, although they have not taken into account the 
electromagnetic effects explicitly in their calculation, a comment first made by Feynman 
(1968). One has also the old q-pole model of Riazuddin and Fayyazuddin (1962), further 
elaborated by Faldt et a1 (1967) to calculate the AI = effects in K --* 2n decays due to 
the virtual electromagnetic interactions. This model by itself does not have AI = 1 
effects and, further, one has to use the SU(3) symmetry argument to relate the amplitude 
for K -+ nq to that of K -+ 2n. But we have already mentioned that from the SU(3) 
symmetry arguments the amplitudes for K -+ 271 decays vanish. Greenberg (1969) used 
involved pole models to calculate the AI = 3 effects in K -+ 2n decays, although many 
parameters in the model are not very well known. 

The plan of the paper is as follows. In Q 2 we analyse the recent K -+ 2n decay rates 
in terms of the most general parametrization. In $6 3 and 4 we calculate the AI = 3, 5 
effects in K + 2n decay amplitudes from the virtual electromagnetic and intrinsic weak 
interactions. The extrapolations of the matrix elements to the 'physical point' are done 
in Q 5. We give the final results in Q 6 and discuss them. 

2. Analysis of K 4 2n decays 

The Hamiltonian responsible for the decay K -+ 271 (CP conserving parts only) has the 
following components (considering only the isospin violating properties) : 

(2.1) 

We denote the relevant K; -+ n'n-, K; -+ 277' and K f  -+ 71'nO decay amplitudes by 
A: -,  Ago and A I  , respectively. In terms of the reduced matrix elements 

Hw NL - - H(AI= l i 2 )  + ~ ( 3 / 2 ) +  ~ ( 5 ' 2 ) .  

a, = (I = 011H'''2'11~) (2.2) 

U, = ( I  = 211H("*)11+), m =  3 , 5  (2.3) 

and the S-wave 71-n phase shifts, 6,(1 = 0,2), the amplitudes A: -, Ago and A z o  can be 
expressed as (assuming CTP and CP invariances) 

- = 2a, eido+ (a3 + as) ei62 (2.4) 

A:, = 2u, ei60- 2(u3 + a 5 )  ei62 

A ; , =  ("a 2 3 - u s )  ei62, 

using appropriate Clebsch-Gordon coefficients. We introduce the parameters 
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and the ratios of the squares of the amplitudes A? -, AEo and A 1 

(2.9) 

Noting that the reduced matrix elements a, ( i  = 0, 3, 5) are real from CP invariance, the 
ratios B(KZ) and b +  can be expressed in terms of the three parameters 151, Iw( and Re o 
of (2.7) as 

6 Re w- 3101~ 
B(KSo) = 1 - 4Rew + 4101~ 

From experiments (Soding et a1 1972) we have 

= (1.458 f 0.030) x 10- '. T(K+ + n+no) 
r(Kg + .rr+n-)+ r(K,O + ~ T O X O )  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Taking out the appropriate phase-space factors from the decay rates r ( K i  -+ 7c+n-), 
r(Kg + nono) and T(K+ + 7 1 ' 7 ~ ~ )  we have for the ratios B(K:) and b +  (Sarker 1972), 

B(KSO),,, = 0*1234+ 0.0160 

bLp = (1.447+0.033)x lo-'. 

(2.14) 

(2.15) 

We note that from the AI = 4 rule follows : 

B(KZ) = 0, .b' = 0 ;  (2.16) 

and if we assume AI = 5 to be absent, then 5 is 3. 
The values of the parameter 101 and the n-n S-wave phase shift (do- 6,), depending 

on the values of ltl, obtained from (2.10), (2,11), (2.14) and (2.15), are shown in figure 2. 
In figure 2(b) the broken curves indicate the errors of the predicted values of \(So - S,)l 
and the shaded region is the overlap of the predicted values of [(60-62)1 and 
(6,-6,) = 55.5" & 5.1" at J s  = mK, obtained from the analyses of the total and differ- 
ential cross sections of the 71--71 scattering cross sections (Marakov et a1 1972). We note 
that (do- 6,) = 55.5" f 5.1" corresponds to the values of 141 = 1.35!:::;, indicating that 
AI = $ contributions to K + 2n decays are small. 

3. Electromagnetic contributions to K + 2n decays 

To calculate the virtual electromagnetic contributions to K + 271 decays we use the 
models of figure 1. The electromagnetic interaction Hamiltonian has AI = 1 and 2 
parts. When combined with the first-order weak interactions, it will induce AI = 3 and 
$ effects in the K + 271 decays. 
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Figure 2. Graphs for ( U )  I(uj and ( b )  l(b,,-dz)i against I l l .  The broken curves in ( h )  indicate 
the errors. The experimental value ( 6 ,  - 6,) = 55.Y + 5.1" corresponds to = 1.35 1:; :'. 

To second order in perturbation theory the matrix elements of the electromagnetic 
interaction Hamiltonian of the graphs of figure 1 are given b) 

M,,(K$ -+ K'nn) 

(3.1)  

(3.2) 

where d v v ( . x )  is the photon propagator. In (3.1) and (3.2) we take soft-kaon approxi- 
mations to pick up the A i  = 2 electromagnetic contributions from the pion electro- 
magnetic mass difference, while the soft-pion approximations gives the A i  = 1 electro- 
magnetic contributions from the kaon electromagnetic mass difference. The extrapola- 
tion of these results to the physical points will be considered in 8 5. 

3.1. A i  = 2 to/itrrhutioris 

We perform a soft-kaon reduction of the two kaons in (3.1) and averaging over the two 
ordersofpartial integrat ionobtain,af terusingtherc~~relat ion?,A~ = , '2f,/n~K4 'I5. 
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etc and the appropriate equal-time current commutation relations 

P,P'+ 0 
lim MLt)(K+ + KOn+nO) 

x (n+(q)nO(q)lT{ v;-'2(X)vy3(0)+ v;(x)v , ' - '2(0)}~0) .  (3.3) 

After performing an isotopic spin rotation on the right-hand side of (3.3) and then 
assuming crossing symmetry and analyticity we obtain 

lim MLt'(K+ + KOn+no) 
P , P ' + O  

We have 

Using (3.5) in (3.4) we get 

Similarly 

lim Mit)(K; + Konn) = 0. 
p . p ' -  0 

(3.6) 

(3.7) 

We note that the process of taking the soft-kaon approximation of M,,(K+ + Kon+no) 
picks out the AI = 2 electromagnetic contributions on the right-hand side of (3.4). 

3.2. The AI = 1 electromagnetic contributions 

We now reduce the two pions on the right-hand side of(3.1) and averaging over the two 
orders of partial integrations obtain, after using the pion PCAC relation, a,A; = fnm:n3, 
etc and the appropriate equal-time current commutation relations 

lim ML:'(K+ + Konr+nO) 
4 d - 0  

x (Ko(p')lT{ V;-i2(x)Vt(0)+ V~(X)V'- '~}IK+(P)).  (3.8) 

Again performing an isotopic spin rotation on the right-hand side of (3.8) and using 
the kaon electromagnetic mass difference relation 
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in (3.8) we obtain 

1 lim ML;’(K+ -+ K0n+~O)  = -- 
q.q’+ 0 

(3.10) 

We just point out that Am: contains only the AI = 1 electromagnetic effects. 
Later on we will have to extrapolate the results of equations (3.6) and (3.10) from the 

indicated limiting points to the physical points. In order to do that we need explicit 
analytic expressions for the electromagnetic mass differences Am: and A m i .  From the 
algebra of currents and the hard-pion technique of Schnitzer and Weinberg (1967), 
Gerstein et  al(1967) derived the following expression for the pion electromagnetic mass 
difference : 

(3.11) 

where A is a cut-off parameter of infinite integration and 

(3.12) 

and 6 is a parameter of the ~c-p-A, system with values 0 6 S 2  6 b. We note that in the 
limit m: -+ 0, the expression (3.11) is finite and gives Amn = 5 MeV compared to the 
(Am,),,p = 4.61 MeV. 

The kaon electromagnetic mass difference is however somewhat problematic because 
of the fact that it is difficult to explain its experimental value as being due to only the 
conventional electromagnetic interactions (apart from the other difficulty of infinity). 
So one has to take into consideration some tadpole-type of electromagnetic interactions 
(Coleman and Glashow 1964). To calculate the actual value of this tadpole-type of 
contribution to the kaon electromagnetic mass difference is quite model dependent. 
However for our present purpose we take the view that the difference between the 
experimental pion and kaon electromagnetic mass differences is given by this tadpole 
contribution to Ami (Wallace 1970) : 

(Ami), = ( m i  + - mio) - (m: + - m:o). (3.13) 

For the non-tadpole contributions to Am; we take 

i m2 
In A’ + 9 In 2+ In ++ 5S(3 In 2- $)+ S2(  -$+$ In 2) 

mK 

(3.14) 

where C, is given by (Dashen 1969) 

We shall consider the relation (3.15) to be true only in the numerical sense. Dashen 
showed that the relation (3.15) is also true for the symmetry-breaking Hamiltonian (5.1), 
considered later on in this work. 
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4. The A I  = 3 weak-interaction effects 

We take the nonleptonic weak-interaction Hamiltonian in the Cabibbo form as 

G 1  
H%’’)(x) = - - ( J~+i2(~)J : - i5(x)+  J;-i5(x)Jt “’(x)) sin 8 cos 8 (4.1) 

where J , (x )  = ( V ( x )  + A(x)), and 8 is the Cabibbo angle. We note that only the parity- 
violating terms in (4.1) contribute to the K +  -, n+n- decay amplitude M z  defined by 

J 2  2 

We reduce the kaon on the right-hand side of(4.2) and using the kaon PcAcand the equal- 
time current commutation relations obtain in the soft-kaon limit : 

Making an isotopic spin rotation on the right-hand side of (4.3) and using crossing 
symmetry and analyticity we obtain from (4.3) 

(4.4) 

We note that only the parity-conserving parts of J,J,  contribute on the right-hand 
sides of (4.3) and (4.4). We define 

where A and B are two constants. From (4.4) and (4.5) we get 

sin 8 COS 8(4A - B). lim M:o  = - 
p-0 2 J 2 f K  

G 

The constants A and B are related to the coefficient of the divergent term of the pion 
electromagnetic mass difference, first shown by Muller and Rothleither (1968). So to 
obtain 4A - B we proceed as follows. To order e’ the pion electromagnetic difference 
(3.5) in momentum space is 

where 

TJq, k) = S d 4 x  eik”[(n+(q)lT{ V;’(x)V‘,’(0)}1n+(q)) -(n+ -, no)]. (4.8) 

From covariance T,,(q, k) can be expressed as 
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where 1’ = - ( k .  q)/m,. The Bjorken limit (Bjorken 1966) of T,,(q, k )  is given by 

(4.10) 

In the generalized gauge field model (Lee et ul 1967) the first commutator on the right- 
hand side of (4.10) is zero, while the second commutator is given by 

Now the right-hand side of (4.11) can be rewritten as 

c (V;v;+A;A;)  = + 1 (v;vl’+A;A;)- 1 (V;v;+A;A;).  
i =  1.2.4.5 z =  1,2.3,4.5.6,’.8 1 =  3 , 6 , 7 , 8  

(4.12) 

Now the first sum and also the terms c( = 6 ,7 ,  8 do not contribute to  the 71-71 matrix 
element on the right-hand side of (4.10) and we obtain from (4.5), (4.10), (4.11) and (4.12) 

(4.13) 

To express Tl(v ,  k 2 )  and T2(v, k 2 )  in terms ofthe constants A and B we use the following 
identifications from the nonrelativistic frame to the covariant reference frame : 

(4.14) 

Using (4.14) and (4.15) in (4.13) and comparing the resultant expression with (4.9) we 
obtain 

1 3 A - B  v2B 
ko* oc 

k = O  

Substituting (4.18) in (4.7) and performing the d4k integration we obtain 

(4.16) 

(4.17) 

(4.18) 

3a 1 
32n 2f i (Ami)diY = __ -(4A - B) In A2 (4.19) 
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where A is the cut-off limit of the infinite integration. Comparing (4.19) with (3.11) we 
get 

(4.20) 4A - B = 2fim:(l+ 6’) 

and using (4.20) in (4.6) we have 

(4.21) 

5. SU(3) x SU(3) symmetry breaking and mass extrapolation 

Following Gell-Mann, Renner and Oakes, we assume that the medium-strong inter- 
action Hamiltonian H,, has two parts; one part H,, which is invariant under the 
SU(3) x SU(3) symmetry group, and the other H’ that breaks symmetry and belongs to 
the (5,3)+(3,3) representation of SU(3) x SU(3). So the most general form for H,, is 

H,, = Ho+u0+J2au,  (5.1) 

where ui are the scalar densities belonging to ( 3 , 3 ) + ( 3 , 3 ) ,  and ‘a’ is a parameter. We 
note that at least in some chiral lagrangian models the symmetry breaking Hamiltonian, 
as taken in (5.1), leaves the masses of the vector and axial-vector mesons separately, as 
well as the equal-time commutation relation of the generalized gauge field model as 
given in (4.11), unchanged (Gottlieb et a1 1972). The rest masses of the pseudoscalar 
mesons Pi are however given by 

One has the general form 

( 5 . 3 )  

where i, 1 = 1,. . ,8 ,  j = 0,. . .8 ,  and c( and l j  are two parameters related to the pseudo- 
scalar masses. From (5.1), (5.2) and (5.3) we get 

m: = mi(1 +a)  (5.4) 

(5.5) mK 2 = mg(1 -fa) 

where mi is some common mass. We first note that in the limit a + - 1, mi = 0 and 
the exact SU(2) x SU(2) symmetry is realized. In the limit a + 2, however, m i  = 0. The 
physical masses of mi and m i  determine the value of the parameter ‘a’ to be -0.9. We 
further assume that the pseudoscalar meson masses and the matrix elements depending 
explicitly on these masses are smooth functions of the parameter ‘a’ between the limits 
a = - 1,2. For a = 0, one of course realizes the full SU(3) x SU(3) symmetry. In the 
following we would also use the result 

f n  = f K  (5.6) 
which is consistent with the symmetry breaking assumption (5.1). 

We note from (3.6) and (3.10) that the matrix elements limp,p,,o ML:)(K+ + Kon+no) 
and lim,,,,,, M!i)(K+ -, Kolcfno) are related to the electromagnetic mass differences 
Ami and Ami in the limits a + 2 and a + - 1 respectively. Similarly M I  in (4.21) is 
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related to mi in the limit a + 2. We consider the extrapolation of the relation (4.21) 
first. We have 

cr 
lim M i  = -f,(~ + d2)m,?(a = 2) 

lim M T o  = 0. 
a - 2  J2 
a+O 

From (5.4), ( 5 3 ,  (5.7) and (5.8) we get for M T ,  at the physical point a = -0.9 

G 
M : 0 = -fn( 1 + P)(m,Z - mi). 

J2 

(5 .7 )  

(5.9) 

This result was first obtained by Chen and Mathur (1970). From the relations (3.6) and 
(3.10) we have 

(5.10) 

(5.11) 

Without any further knowledge of the ‘a’ dependence of Mk:) and Mk:), the extrapolations 
of (5.10) and (5.1 1) are not uniquely determined and the infinities of the electromagnetic 
mass differences (3.11) and (3.14) cannot be related. However for (5.10) and (5.11) we 
take the same extrapolation as that of M:,, which makes Mi:) and Mi; )  finite at a = 0. 
At the physical point a = -0.9 we have for MLt) and M $ )  

(5.12) 

(5.13) 

where d ,  is some finite term (keeping only linear terms in the parameter ‘a’ in the extrapo- 
lation). Because of the relation (5.6), the sum of the contributions (5.12) and (5.13) to 
the K +  + n+no decay amplitude is also finite. 

To calculate the tadpole contributions to M(2)(K+ -+ Kon+nO), we assume that the 
tadpole behaves like an u3 term of the (5,3)+(3,3) representation. Then 

(5.14) 

In writing the first equality of (5.14) we have assumed that the coefficient of the u3 term 
is independent of the parameter ‘a’, although in some models they can be related 
(Subba-Rao 1972). 

6. Results and discussions 

We are now in a position to write down the AI = 2 and ;contributions due to both the 
virtual electromagnetic and the weak interactions to the K -+ 271 decay amplitudes. 



K -+ 271 decays 68 3 

Remembering that the contributions from the graph of figure 1 have appropriate kaon 
propagators at zero momentum we have for A : o  from (5.12H5.14) and (5.9) 

2bol 2 Gf, 
mK J 2  

IA;OI = 7{3(m:+ -m,O)-(m;+ -mio)} +-(1 +s2)(m;-m:) (6.1) 

where we have used the fact that C ,  N (m:+ -m:o) and the relation (Wallace 1969) 

We now use f, = 0.67m,, G = 1.026 x 10-5m;2 and 6 = 0 (favoured by Schwinger 1967) 
and sin 8 = 0.26 (to be consistent with the relation (5.6)) in (6.1) and express the results 
in terms of the parameters Iw(, and 151. [(So -6J is then determined from the relation 
(2.10). We get 

= 0.040+0*001 (6.2) 

(6.3) 

(6.4) 
which should be compared with the experimental values 

(6.5) 

(6.6) 

(6.7) 
The value of (6, -62)exp in (6.7) is taken from the analysis of Marakov et a1 (1972). The 
values of lwlexp and 151exp are then calculated from the graphs of figure 2. The predicted 
values of 101, 151 and 1(60-62)1 are in good agreement with their experimental values 
(6.5)-(6.7), although the latter have still large errors$. 

+0.012 ( ~ l , , ~  = 0.035- 0.009 
+ 0.44 

I l I e x p  = 1.35-0.3, 
(60 - ~ 5 2 ) , , ~  = 55.5" f 5.1". 
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